
Substance Documentation
Release 0.10.2

Turbulent inc.

Apr 30, 2021

Contents

1 Installation 3
1.1 On macOS . 3
1.2 On Windows (WSL) . 4
1.3 On Windows (Cygwin) . 4
1.4 On Linux . 5
1.5 Upgrading Substance to a new version . 6

2 Basic Usage 7
2.1 Architecture . 7
2.2 Create your first engine . 7
2.3 Syncing local files to and from the engine . 8
2.4 Setup your first environment . 8
2.5 Consulting logs . 9
2.6 Entering a container shell . 9
2.7 Executing a command from within a running container . 9

3 Engine Configuration 11
3.1 box . 11
3.2 devroot . 11
3.3 docker . 12
3.4 driver . 12
3.5 network . 12
3.6 profile . 12
3.7 aliases . 12

4 Environment Setup 15
4.1 Environment configuration . 16
4.2 Configuring containers . 16

5 Substance Internals 19
5.1 The subenv utility . 19
5.2 How to use subenv . 19
5.3 Creating a subenv spec (.substance) . 20
5.4 subenv.yml . 20

6 Upgrade from substance 0 to 1 23
6.1 Upgrading on macOS . 23

i

6.2 Upgrading on Windows . 24
6.3 Upgrading on Linux . 24
6.4 Post-Install steps . 25
6.5 Known issues . 25

7 FAQs and Troubleshooting Substance 27
7.1 Known Issues And Mitigation . 27

8 Indices and tables 29

ii

Substance Documentation, Release 0.10.2

Welcome to Substance’s online help!

Substance combines a virtual machine and docker into one self contained tool. Complex projects can be distributed
with a .substance folder which defines all the environmental details in one so you can spend more time developing and
less time setting up servers.

Contents 1

Substance Documentation, Release 0.10.2

2 Contents

CHAPTER 1

Installation

Substance supports all three main desktop operating systems: macOS, Windows, and Linux. Its main prerequisite is
Oracle VirtualBox, which also supports these platforms.

If an existing substance project is going to be used, make sure to check how much RAM and disk space will be required
before procceding with the installation.

1.1 On macOS

Substance is not compatible with the Python distribution that ships with macOS. You must use Homebrew to install
the latest Python 2.x release.

1. Download and install Oracle VirtualBox. Make sure VBoxManage is in your PATH environment variable.

2. Make sure Xcode CLI is installed:

$ xcode-select --install

3. Ensure Homebrew is installed:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
→˓install/master/install)"

4. Install Homebrew’s Python (Version 3 and up) distribution:

$ brew install python

5. Make sure that you are running python 3.x when installing substance. If there is 2 versions of python installed
python/pip will probably be 2.7, and python3/pip3 3.x

6. The python3 installed by homebrew should be located under /usr/local/bin. The python version
under /usr/bin is the one installed by default in MacOS. You can verify python version with --version
argument and locate executable with which command.

3

https://www.virtualbox.org/wiki/Downloads
https://brew.sh/
https://www.virtualbox.org/wiki/Downloads
https://brew.sh/

Substance Documentation, Release 0.10.2

If homebrew’s version is not found that’s probably because it is not in your PATH. Use the command brew
doctor, copy the command to add it to your PATH and restart your terminal.

7. Ensure pip3 is up to date:

$ sudo pip3 install -U pip

8. Install substance:

$ sudo pip3 install substance

1.2 On Windows (WSL)

Disclaimer: Substance has only been tested on Windows 10 Pro 64-bit edition.

1. Install Oracle VirtualBox. Make sure VBoxManage is in your PATH environment variable (System -> Advanced
System Settings -> Environment Variables -> Path -> add path to your VirtualBox installation directory).

2. Open PowerShell (or cmd) as Administrator and run:

Copy
Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-
→˓Linux

3. Restart the computer

4. Download and install your distribution of choice. We recommend Debian/stretch from the Microsoft Store.

1. Open the Microsoft Store and choose your favorite Linux distribution.

2. Debian GNU/Linux (Stretch)

5. Install python3 on your linux distribution:

$ apt-get update
$ apt-get install -y python3 python3-dev python3-pip

6. Install substance with pip:

$ pip3 install substance

The home directory used by substance in WSL will be your Windows user’s home directory (for example:
C:\Users\USERNAME) This is to allow your projects and code can be edited and modified from both programs inside
WSL and outside.

For simplicity, the sync process (unison) within WSL will run the linux version.

1.3 On Windows (Cygwin)

Due to poor support for command-line utilities on Windows, Cygwin is required to run Substance on Windows.

Disclaimer: Substance has only been tested on Windows 10 Pro 64-bit edition. Installation on 32-bit Windows is NOT
supported.

1. Install Oracle VirtualBox. Make sure VBoxManage is in your PATH environment variable (System -> Advanced
System Settings -> Environment Variables -> Path -> add path to your VirtualBox installation directory).

4 Chapter 1. Installation

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Substance Documentation, Release 0.10.2

2. Install Cygwin 64-bit. Here are the steps:

1. Create a directory C:\cygwin64 on your main drive. Create a subdirectory named “setup” inside that
directory.

2. Download setup-x86-64.exe from https://www.cygwin.com/ and place it in
C:\cygwin64\setup

3. Double-click on setup-x86-64.exe, and perform the install. Keep the default location and make sure
the following packages are selected:

• mintty (under “Shells”)

• make (under “Devel”)

• git (under “Devel”)

• gcc-core (under “Devel”)

• python2 (under “Python”)

• python2-devel (under “Python”)

• libffi-devel (under “Libs”)

• openssl-devel (under “Net”)

4. Optionally, you can create a shortcut to setup-x86-64.exe and add it to your Start menu; you can
re-run the setup whenever you want to add or remove packages to your Cygwin install.

3. Launch Cygwin Terminal (mintty). All the magic happens from there!

4. Run which python && which pip to make SURE that you are running both executables from /usr/
bin, NOT something like C:\Python!

5. Execute the command python --version. You should see an output like Python 2.7.12.

6. Make sure pip is installed and is upgraded to the latest version by running the commands:

$ python -m ensurepip
$ pip install -U pip

7. Install substance:

$ pip install substance

1.4 On Linux

Make sure you are running a 64-bit Linux distribution. 32-bit is NOT supported. Substance has been tested on Mint,
Ubuntu, and Arch Linux.

1. Install Oracle VirtualBox. Make sure VBoxManage is in your PATH environment variable.

2. Install the following software using your package manager. Of course, depending on the distribution, the pack-
age names may slightly vary (but you will usually find a proper equivalent):

• git

• build-essential

• libffi-devel

• openssl-devel

1.4. On Linux 5

https://www.virtualbox.org/wiki/Downloads

Substance Documentation, Release 0.10.2

3. Make sure to have Python 2 available. On some distributions (like Ubuntu 14.04), this is the default Python
interpreter, which means you can use python and pip. On other, more state-of-the-art distributions (like
Arch), you need to install a separate python2 package and use the commands python2 and pip2 for the
rest of this guide. Also install python-devel or python2-devel, depending on your distribution.

4. Install substance:

$ sudo pip install substance

1.4.1 Ubuntu 20.04 LTS

This version of Ubuntu already comes with the development libraries required for substance.

1. Install Oracle VirtualBox.

2. Substance requires Python 3 and pip 3. Python 3 will be already installed and it is accessible with python3.
Install pip 3 with:

$ sudo apt install pip3

3. Install substance:

$ sudo pip3 install substance

Make sure you use Python 3 and pip 3, and not the Python 2 counterpart.

1.5 Upgrading Substance to a new version

On all supported platforms, these commands will allow you to update the Substance on your machine without losing
data or engines:

$ sudo pip uninstall substance
$ sudo pip install substance

6 Chapter 1. Installation

https://www.virtualbox.org/wiki/Downloads

CHAPTER 2

Basic Usage

2.1 Architecture

Substance manages local development environments contained in an engine. An engine is a virtual machine running
Docker. As long as you have enough memory and processing power available on your host machine, Substance can
keep multiple engines running in parallel. Each engine is assigned a directory on your local machine, which defaults
to $HOME/substance/[engine name].

Within a single engine, multiple environments can be setup. Each environment corresponds to a project with a separate
codebase. Essentially, each environment is a separate directory within the engine’s directory, which would default to
$HOME/substance/[engine name]/[env name].

Finally, within each environment multiple services can be defined. Each service corresponds to a long-lived Docker
container with some defined filesystem volumes, environment variables, and/or exposed ports. Each service is labeled
with an easy-to-remember name such as web or database. The services are defined in a templated YAML file at
$HOME/substance/[engine name]/[env name]/.substance/dockwrkr.yml.jinja.

Fig. 1: Example of a local machine with three environments spread over two engines running in parallel.

2.2 Create your first engine

To start using a substance environment, first create an engine. For the sake of this example we will create an engine
named work:

$ substance engine create work --memory 2048 --cpus 2

Launch your engine with the launch command:

$ substance engine launch work

7

https://www.docker.com/

Substance Documentation, Release 0.10.2

After a few minutes, substance will have pulled the box and launched your engine. By default substance will create a
devroot directory for this new engine in $HOME/substance/work.

Since this is our first and main engine, we need to tell Substance to use our new engine as the default engine for future
commands. This is done with the use command:

$ substance use work

2.3 Syncing local files to and from the engine

Since a Substance engine is a virtual machine, there must be a way to synchronize local files to and from the virtual
machine. Though engines are managed by VirtualBox, Substance does not make use of VirtualBox’s shared folder
feature due to performance reasons. Instead, Substance leverages the Unison syncing utility.

You can start the sync process like so:

$ substance sync

This will make sure all local files located under ~/substance/[engine name] are kept in sync with the engine’s
local file system.

Always keep this process running while you develop!

2.3.1 Known Issues

• Fatal error: Filesystem watcher error: cannot add a watcher: system
limit reached

This happens when the number of files being watched on the local system exceeds the maximum
amount of files permitted to be watched by a single user at the same time.

To increase this limit, modify the value inside: /proc/sys/fs/inotify/
max_user_watches.

• Fatal error: Server: End_of_file exception raised in loading archive
(this indicates a bug!)

This error can happen if some unison cache files are corrupted. to fix this, delete the contents of
~/.substance/unison/ and /substance/.unison/ inside your substance engine.

2.4 Setup your first environment

To start working on a project, git clone the project in ~/substance/[engine name]/[project name].
Make sure your files are properly sync’ed, then instruct Substance to switch to that project and initialize the develop-
ment environment by issuing the following command:

$ substance switch [project name]

This will download the proper Docker images and start the Docker containers required for the project to work.

At this point, your environment is up-and-running, but the project may require more initialization steps (e.g. building
Javascript and/or setuping a database). Check the project’s maintainer for further setup instructions.

8 Chapter 2. Basic Usage

https://www.cis.upenn.edu/~bcpierce/unison/

Substance Documentation, Release 0.10.2

2.5 Consulting logs

Substance expects all services of an environment to write logs to a directory using a specific filename convention.
The filename should be dash-separated lowercase segments and end with .log. The first segment should be the
container name, other segments are optional and up to the specific Docker image. Example of valid log filenames:
web-nginx-access.log, database-mysql-slow.log, etc.

To view logs of the various services of your environment:

$ substance logs filter1 filter2

This will automatically tail the logs matching the filters you provided. For example, substance logs web php
will tail logs with the pattern web-php-*.log (logs of the PHP-FPM process running in the Docker container
named web).

2.6 Entering a container shell

To open an interactive bash shell into a service container of the current environment, you can use the substance
ssh command:

$ substance ssh [containername]

By default, this opens a shell as the root user in the root directory of the container. You can also specify a user and an
initial directory with the -u and -d switches respectively:

$ substance ssh -u [username or uid] -d /path/to/initial/directory [containername]

2.7 Executing a command from within a running container

For one-off commands, rather than opening a full interactive shell, it may be easier to use the substance exec
command:

$ substance exec [containername] echo "Hello, world!"

Just like substance ssh, the -u and -d switches can be used to override the default root user and directory for
the command. Make sure to specify these switches before the container name!

You can also configure your engine to have aliases for often-used commands. For example, by default, a newly-created
engine comes with an alias for the make command to be run within a container named web as the user heap and
directory /vol/website, so that executing:

$ substance make

is functionally-equivalent to executing:

$ substance exec web -u heap -d /vol/website make

To learn more about aliases, consult aliases.

2.5. Consulting logs 9

Substance Documentation, Release 0.10.2

10 Chapter 2. Basic Usage

CHAPTER 3

Engine Configuration

Substance engines are defined by a simple YAML configuration file which is located at $_HOME/.substance/
engines/[enginename]/engine.yml. This file is automatically created for you when you create a new engine
using the substance engine create command.

You can edit this file in any text editor of your choice. As a convenience, Substance will open it in your fa-
vorite editor (specified by the EDITOR environment variable) using the command substance engine edit
[enginename].

What follows is an overview of all configuration sections in the file.

3.1 box

Specifies the box file used to create the VM in VirtualBox upon first launch. After first launch, this setting is no longer
used.

3.2 devroot

This configures how the local directory for the engine will behave.

• path specifies the path to the directory on the local machine.

• mode specifies the sync mode. Possible values are unison (default) and subwatch (deprecated).

• excludes lists filename patterns to ignore on sync. You can use this setting to ignore additional file patterns
for the projects hosted using this engine. Note that this can only match patterns based on filename, not full
directory path. To ignore files based on directory path, use the syncArgs setting.

• syncArgs lists additional arguments to pass to unison when mode is set to unison.

Note: The subwatch mode is the legacy way to sync files. It does not work as expected under all conditions. You
should really use unison instead. If unison really isn’t working out for you, then try subwatch, but expect bugs.

11

Substance Documentation, Release 0.10.2

You will also have to install the subwatch module separately using pip.

3.3 docker

This configures the Docker daemon running inside the engine. You will usually want to leave the defaults as-is.

3.4 driver

Specifies the virtualization backend to use for managing the virtual machine. virtualbox is the only currently-
supported value for now, but more backends will be added in the future.

3.5 network

All Substance engines are networked using a Host-only network adapter serving as a DHCP server. The settings in
this section are automatically filled in and updated by Substance after each launch of the engine.

3.6 profile

Specifies the capabilities of the virtual machine. Currently, two settings are supported:

• cpus: Specifies number of virtual CPUs

• memory: Specifies amount of memory to reserve for the VM (in megabytes)

Note that these settings can be changed even after the VM has been created in VirtualBox (requires a reboot of the
VM).

3.7 aliases

Substance engines can define a list of commonly-used commands to execute within specific containers. This allows the
user to avoid having to type a long and difficult-to-remember command for common tasks such as building a website,
pulling packages, etc.

Since Substance was designed for web development first, all engines come pre-configured with a few aliases for web
development. All of these aliases are configured to be executed within a container named web as a user named heap
within the directory /vol/website:

• substance make: Execute make.

• substance composer: Execute the composer command (PHP package manager).

• substance npm: Execute the npm command (Javascript package manager)

• substance watch: Execute the webpack -w command (Web build tool in watch mode)

Note that executing an alias will pass along all arguments following the name of the alias, e.g.:

$ substance make clean TARGETS=all # executes 'make clean TARGETS=all' within the
→˓container

12 Chapter 3. Engine Configuration

Substance Documentation, Release 0.10.2

You can add more aliases (or even change the configuration for the pre-configured ones) by editing your engine’s
definition file. Here’s the example configuration for the above command:

aliases:
composer:
args:
- composer
container: web
cwd: /vol/website
user: heap

make:
args:
- make
container: web
cwd: /vol/website
user: heap

npm:
args:
- npm
container: web
cwd: /vol/website
user: heap

watch:
args:
- watch
container: web
cwd: /vol/website
user: heap

Simply add more entries to the aliases YAML object to define new aliases for your engine.

3.7. aliases 13

Substance Documentation, Release 0.10.2

14 Chapter 3. Engine Configuration

CHAPTER 4

Environment Setup

Warning: Some of this information may be a little out-of-date. We will soon provide an automated tool to do
this work. In the mean time, please talk to the substance developers directly if you want to setup your project for
substance.

At the top level of your project source code create a folder named .substance. In this folder. A system to initialize
projects is in the works, but for now create the following base structure or copy it from a recent project:

.
|-- conf
| |-- cron
| |-- logrotate
| `-- web
|-- data
| |-- media
| |-- uploads
| `-- work
|-- database
|-- dockwrkr.yml.jinja
|-- logs
|-- spool
|-- subenv.yml
`-- var

|-- heap
| `-- cache
|-- purifier
| `-- cache
`-- smarty

`-- compile

Ensure the var directory and it’s children have mode 0777.

15

Substance Documentation, Release 0.10.2

4.1 Environment configuration

In your .substance folder you should create a .env file that will host the configuration/environment variable you
will need when templating files in your project subenv.

The special variable called SUBENV_FQDN controls the DNS name for your project. Make sure you set it. Also, make
sure this name is in the same TLD as configured in your substance config. (~/.substance/subenv.yml)

Here is a sample .env:

SUBENV_FQDN="myproject.local.dev"
MYCUSTOMVAR="foobar"

When resolving variables ; subenv will also look for a .env file at the root of your project for overrides.

4.2 Configuring containers

Substance uses dockwrkr to manage containers in the work engine. Your project must define the containers it requires
to function and their configuration in the form of a dockwrkr.yml file.

Your .substance directory must contain a dockwrkr.yml.jinja that will be used by substance to resolve
environment and configuration variable before writing the file in your project environment in the work engine.

Refer to the dockwrkr manual for details on this configuration as well as the subenv command for details on the
variables available. All variables you defined in your .env file can be used in the jinja template.

Here is a sample Heap project dockwrkr configuration template

pids:
enabled: false
dirs: pids

containers:
dbmaster:
image: docker-registry.turbulent.ca:5000/heap-mysql:2.0
hostname: dbmaster
env:

VAR_MYSQL_PASS: "dev"
VAR_MYSQL_INNODB_BUFFER_POOL_SIZE: "100M"
VAR_MYSQL_SERVER_ID: 2
VAR_MYSQL_REPLICATION_MASTER: 1
VAR_MYSQL_REPLICATION_USER: "replication"
VAR_MYSQL_REPLICATION_PASSWORD: "dev"
VAR_PROJECT_NAME: {{name}}

publish:
- "3306:3306"

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/database:/vol/database"

cache:
image: docker-registry.turbulent.ca:5000/heap-memcached:2.0
hostname: cache
publish:
- "11211:11211"

env:
VAR_MEMCACHED_SIZE: "64M"

(continues on next page)

16 Chapter 4. Environment Setup

https://github.com/bbeausej/dockwrkr
https://github.com/bbeausej/dockwrkr

Substance Documentation, Release 0.10.2

(continued from previous page)

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"

redis:
image: docker-registry.turbulent.ca:5000/heap-redis:2.0
hostname: redis
publish:
- "6379:6379"

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/database:/vol/database"

qmgr:
image: docker-registry.turbulent.ca:5000/heap-qmgr:2.0.1
hostname: qmgr
env:

VAR_HEAP_QUEUE_WORKERS: 1
link:

- "dbmaster:dbmaster"
- "cache:cache"
- "sessions:sessions"
- "rabbit:rabbit"
- "redis:redis"

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/var:/vol/var"
- "{{SUBENV_ENVPATH}}/spool:/vol/spool"
- "{{SUBENV_BASEPATH}}:/vol/website"
- "{{SUBENV_ENVPATH}}/data:/vol/data"

web:
image: docker-registry.turbulent.ca:5000/heap-app-dev:2.0.5
hostname: web
env:

VAR_NMAILER_HOSTNAME: ""
VAR_NMAILER_ROOT_ALIAS: ""
VAR_NMAILER_DOMAIN: ""
VAR_NMAILER_REMOTE_TLS: 0
VAR_NMAILER_REMOTE_HOST: ""
VAR_NMAILER_REMOTE_PORT: "25"
VAR_NMAILER_REMOTE_USER: ""
VAR_NMAILER_REMOTE_PASS: ""
VAR_NGINX_SERVER_NAME: "{{SUBENV_FQDN}}"
VAR_FPM_MAX_CHILDREN: 5
VAR_FPM_MIN_CHILDREN: 5
VAR_FPM_MAX_REQUESTS: 500

link:
- "dbmaster:dbmaster"
- "cache:cache"
- "sessions:sessions"
- "rabbit:rabbit"
- "redis:redis"

publish:
- "80:80"
- "443:443"
- "9001:9001"
- "9002:9002"

(continues on next page)

4.2. Configuring containers 17

Substance Documentation, Release 0.10.2

(continued from previous page)

- "9003:9003"
volume:

- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/var:/vol/var"
- "{{SUBENV_ENVPATH}}/spool:/vol/spool"
- "{{SUBENV_ENVPATH}}/data:/vol/data"
- "{{SUBENV_ENVPATH}}/conf/web:/vol/conf"
- "{{SUBENV_BASEPATH}}:/vol/website"

cron:
image: docker-registry.turbulent.ca:5000/heap-cron:2.0.1
hostname: cron
env:

VAR_NMAILER_HOSTNAME: ""
VAR_NMAILER_ROOT_ALIAS: ""
VAR_NMAILER_DOMAIN: ""
VAR_NMAILER_REMOTE_TLS: 0
VAR_NMAILER_REMOTE_HOST: ""
VAR_NMAILER_REMOTE_PORT: "25"
VAR_NMAILER_REMOTE_USER: ""
VAR_NMAILER_REMOTE_PASS: ""

link:
- "dbmaster:dbmaster"
- "cache:cache"
- "sessions:sessions"
- "rabbit:rabbit"
- "redis:redis"

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/var:/vol/var"
- "{{SUBENV_ENVPATH}}/spool:/vol/spool"
- "{{SUBENV_ENVPATH}}/conf/cron:/vol/conf"
- "{{SUBENV_ENVPATH}}/data:/vol/data"
- "{{SUBENV_BASEPATH}}:/vol/website"

logrotate:
image: docker-registry.turbulent.ca:5000/heap-logrotate:2.0
hostname: logrotate
env:

VAR_LOGROTATE_MODE: "daily"
VAR_LOGROTATE_ROTATE: "7"

volume:
- "{{SUBENV_ENVPATH}}/logs:/vol/logs"
- "{{SUBENV_ENVPATH}}/conf/logrotate:/vol/conf"
- "/var/lib/docker/containers:/vol/docker-logs"

18 Chapter 4. Environment Setup

CHAPTER 5

Substance Internals

The following documentation is not required knowledge for using Substance. However, if you are curious about how
Substance works under-the-hood, keep reading!

5.1 The subenv utility

When operating on a substance engine, the subenv utility is used inside the engine virtual machine to generate and
switch between project environments.

subenv can read the spec folder .substance. in your project root and will template and create the runtime
environment to run your project.

5.2 How to use subenv

You initiate/apply an environment by using the init command:

$ subenv init path/to/myprojectA
Initializing subenv from: path/to/projectA
Loading dotenv file: 'path/to/projectA/.substance/.env'
Loading dotenv file: 'path/to/devroot/projectA/.env'
Applying environment to: /substance/envs/projectA
Environment 'projectA' initialized.

List available environments using ls command:

$ subenv ls

NAME CURRENT BASEPATH MODIFIED
projectA X /substance/devroot/projectA June 28 2016, 14:14:17
projectB X /substance/devroot/projectB June 28 2016, 15:11:10
projectC X /substance/devroot/projectC June 23 2016, 01:33:02

19

Substance Documentation, Release 0.10.2

Switch the currently use environment with use:

$ subenv use projectC

View the currently in use environment with current:

$ subenv current
projectC

View the computed variables for the current environment:

$ subenv vars
name="projectA"
fqdn="projectA.local.dev"

5.3 Creating a subenv spec (.substance)

Each directory in your engine devroot (referred to here as a project) must have a spec directory (.substance) to define
what the environment needed to run the project is.

When a specdir is applied (using init) subenv will go through the file structure of the specdir and take the following
actions:

• Each file is copied to the environment path

• Each folder is created recursively in the environment path

• All files ending with .jinja are render with Jinja2 and installed in the environment path withouth the .jinja
extension.

The variable context for the jinja templates is populated from the merge .env files in the specdir and the project
directory. subenv will load the .env file in your specdir first and override the values from an optional .env file in
your project root.

Additionally, subenv will provide the following variables for use in your jinja templates:

Variable Value
SUBENV_NAME Name of the subenv
SUBENV_LASTAPPLIED Epoch time of last time this env was applied
SUBENV_SPECPATH Full path to the specdir
SUBENV_BASEPATH Full path to the project path
SUBENV_ENVPATH Full path to the environment
SUBENV_VARS Dict of all variables

5.4 subenv.yml

You can also create a subenv.yml file to specify additional commands to be executed once the environment is ap-
plied. The file format is YAML and only the script setting is available which should contain a list of shell commands
to run when applying the envrionment. Each command is run as UID 1000 within the environment directory.

Sample:

20 Chapter 5. Substance Internals

Substance Documentation, Release 0.10.2

script:
- chmod -R 777 var
- chmod -R 700 database

5.4. subenv.yml 21

Substance Documentation, Release 0.10.2

22 Chapter 5. Substance Internals

CHAPTER 6

Upgrade from substance 0 to 1

Upgrading from substance 0 to 1 requires moving your dependencies from Python 2 to Python 3 and VirtualBox 6.0.

6.1 Upgrading on macOS

1. Stop all your engines:

$ substance engine ls
$ substance engine halt <ENGINENAME> # Do this for every running engine

2. Uninstall substance:

$ sudo pip uninstall substance

3. Upgrade VirtualBox to 6.x:

- Visit https://www.virtualbox.org/wiki/Downloads
- Install the package on your computer.
- Your existing machines and engines should remain intact.

4. Upgrade Python to Python 3:

$ brew uninstall python
$ brew uninstall python@2
$ brew install python

5. Install substance:

$ sudo pip3 install substance

6. Upgrade your engine by either creating a new engine.

23

Substance Documentation, Release 0.10.2

6.2 Upgrading on Windows

1. Stop all your engines:

$ substance engine ls
$ substance engine halt <ENGINENAME> # Do this for every running engine

2. Uninstall substance via cygwin:

$ sudo pip uninstall substance

3. Upgrade VirtualBox to 6.x:

- Visit https://www.virtualbox.org/wiki/Downloads
- Install the package on your computer.
- Your existing machines and engines should remain intact.

4. Upgrade Python to Python 3:

• Run the Cygwin setup (setup-x86_64.exe)

• Remove python, python-devel and python-pip

• Add python3, python3-devel, python3-pip

1. Install substance using the Cygwin terminal:

$ sudo pip3 install substance

6.3 Upgrading on Linux

1. Update your system.:

Debian/Ubuntu
$ sudo apt-get update && sudo apt-get upgrade

Arch
$ sudo pacman -Syu

2. Reboot:

- needed in case the virtualbox kernel modules were updated.

3. Stop all your engines:

$ substance engine ls
$ substance engine halt <ENGINENAME> # Do this for every running engine

4. Install python3:

Debian/Ubuntu
$ sudo apt-get install -y python3.7 python3-pip

Arch
$ sudo pacman -S python python-pip

24 Chapter 6. Upgrade from substance 0 to 1

Substance Documentation, Release 0.10.2

5. Update substance:

$ sudo pip3 install substance

6. You will need to create a new engine so that it can use the newest docker image and virtualbox version:

$ substance engine create <ENGINENAME>

6.4 Post-Install steps

1. After upgrading to substance 1.x, you should take a moment to update your jinja templates to use Python 3
syntax.

example:
dockwrkr.yml.jinja

[...]

VAR_NMAILER_REMOTE_PORT: "587"
VAR_NMAILER_REMOTE_USER: ""
VAR_NMAILER_REMOTE_PASS: ""
{%- for k, v in SUBENV_VARS.iteritems() %}

becomes

[...]

VAR_NMAILER_REMOTE_PORT: "587"
VAR_NMAILER_REMOTE_USER: ""
VAR_NMAILER_REMOTE_PASS: ""
{%- for k, v in SUBENV_VARS.items() %}

6.5 Known issues

1. If you get a CryptographyDeprecationWarning when running substance commands, it’s because of
this issue. As noted, a workaround is running sudo pip install cryptography==2.4.2 until the
problem is fixed in paramiko.

6.4. Post-Install steps 25

https://github.com/paramiko/paramiko/issues/1369

Substance Documentation, Release 0.10.2

26 Chapter 6. Upgrade from substance 0 to 1

CHAPTER 7

FAQs and Troubleshooting Substance

This page answers FAQs, as well as how to diagnose, debug, and work around known issues. We are actively updating
this document!

7.1 Known Issues And Mitigation

7.1.1 My engine is running, memory is up still no VPN, connection is present, but
ping times out

• Stop vm

• Unload kext:

kextstat | grep "org.virtualbox.kext.VBoxUSB" > /dev/null 2>&1 && sudo kextunload -b
→˓org.virtualbox.kext.VBoxUSB
kextstat | grep "org.virtualbox.kext.VBoxNetFlt" > /dev/null 2>&1 && sudo kextunload -
→˓b org.virtualbox.kext.VBoxNetFlt
kextstat | grep "org.virtualbox.kext.VBoxNetAdp" > /dev/null 2>&1 && sudo kextunload -
→˓b org.virtualbox.kext.VBoxNetAdp
kextstat | grep "org.virtualbox.kext.VBoxDrv" > /dev/null 2>&1 && sudo kextunload -b
→˓org.virtualbox.kext.VBoxDrv

• load them back:

sudo kextload "/Library/Application Support/VirtualBox/VBoxDrv.kext" -r "/Library/
→˓Application Support/VirtualBox/"
sudo kextload "/Library/Application Support/VirtualBox/VBoxNetFlt.kext" -r "/Library/
→˓Application Support/VirtualBox/"
sudo kextload "/Library/Application Support/VirtualBox/VBoxNetAdp.kext" -r "/Library/
→˓Application Support/VirtualBox/"
sudo kextload "/Library/Application Support/VirtualBox/VBoxUSB.kext" -r "/Library/
→˓Application Support/VirtualBox/"

27

Substance Documentation, Release 0.10.2

28 Chapter 7. FAQs and Troubleshooting Substance

CHAPTER 8

Indices and tables

• genindex

• search

29

	Installation
	On macOS
	On Windows (WSL)
	On Windows (Cygwin)
	On Linux
	Upgrading Substance to a new version

	Basic Usage
	Architecture
	Create your first engine
	Syncing local files to and from the engine
	Setup your first environment
	Consulting logs
	Entering a container shell
	Executing a command from within a running container

	Engine Configuration
	box
	devroot
	docker
	driver
	network
	profile
	aliases

	Environment Setup
	Environment configuration
	Configuring containers

	Substance Internals
	The subenv utility
	How to use subenv
	Creating a subenv spec (.substance)
	subenv.yml

	Upgrade from substance 0 to 1
	Upgrading on macOS
	Upgrading on Windows
	Upgrading on Linux
	Post-Install steps
	Known issues

	FAQs and Troubleshooting Substance
	Known Issues And Mitigation

	Indices and tables

